ATP: Run-Time Analysis & Improved Punctuality

Alain Martinais
Director of Marketing – GIRO

Forum 1: Fleet Management
April 11, 2011
About GIRO

• Industry leader with 30+ years of innovation
 – Extensive collaboration with clients and researchers

• HASTUS™: Integrated software solution
 – Scheduling and operations
 – Customer information
 – Planning and analysis
 – All modes and types
Why use HASTUS-ATP?

• Improve adherence to planned schedules
• Improve punctuality at relief & meet points
• Increase passenger satisfaction
• Minimize performance penalties (contracted services)
• Reduce operator stress
• Shorten the scheduling/run-time analysis cycle through integration with scheduling
History of ATP

• 1997: Version developed for Mulhouse in France
 – Link-by-link analysis
 – Calculations based on deviation attributes

• 2007: New algorithm developed with TMB & Professor Salicrú from University of Barcelona
 – Optimization for a complete route
 – Sophisticated evaluation of punctuality
History of ATP (cont’d)

• 2009-2011: Improvements to generalize the “Barcelona” approach
 – New version of algorithm
 – Enhanced integration and flexibility
 – Smoothing method considered
 – Comparison tools
ATP Model

• Run-time analysis path
 – Sequence of timing points to analyze

• Run-time segment
 – Two consecutive timing points on path

• Run-time profiles
 – From the origin to each timing point on path
 – Allow users to evaluate punctuality
ATP Model (cont’d)

- Measurements
 - Collected from ticketing, AVL, or manually
 - Any stop can be considered in analysis
 - Contains passing time at stop, wait time, and measurement device
ATP Model (cont’d)
ATP Algorithm

• Automatically generates:
 – Periods
 – Run times
 – Minimum layovers

• Can be used to control:
 – Periods
 – Punctuality criteria
 – Minimum layover
ATP Algorithm (cont’d)

• Period control (can also be fixed)
 – Minimum length and increment
 – Minimum/maximum count

• Punctuality and minimum layover control
 – For each profile
 – Evaluation method (attribute) and ranges
 – Run-time profile: usually a range attribute (e.g. -1 + 3)
 – Layover: usually a percent below attribute (e.g. 90%)
Practical Issues

• Defining objectives is difficult
 – Passengers want punctuality and speed
 – Operators want to minimize cost
 – Organizing authorities want both
 – Drivers prefer longer layovers

• Decisions can have important impacts on:
 – Timetabling, vehicle & crew scheduling

• Quality of measurements is essential
Results

• Can be fine-tuned interactively
• Complete set of analysis tools available
• Can be saved in a new run-time version
• User can save times as network- or route-specific run times
Integration with HASTUS allows users to:
- Load schedules with new run times to analyze the impact of run-time changes
- Adjust public timetables quickly
- Produce new vehicle & crew schedules

The cycle time and effort required for analysis/scheduling are significantly reduced
Conclusions

• Run-time analysis is essential for well-run public transportation companies
 – Minimizes operational costs
 – Increases user satisfaction
 – Helps make operations smoother

• New ATP version is flexible and efficient

• Integration with HASTUS greatly reduces schedule production cycle times
Conclusions (cont’d)

• ATP is a key module for many clients
• 64 customers currently have this module
• ATP’s flexibility meets requirements around the world
• Much interest from public transport industry
• New installations result in rapid improvement of punctuality