Optimised allocation of vehicles to service taking into account light maintenance requests

Alain Martinais, GIRO Inc., Montréal, Canada
GIRO Inc.

- Experts in productivity solutions since 1979
- Recognised world leading solutions
 - Public transport
 - Adapted transport
 - Postal services
- The last four UITP host cities, Helsinki, Vienna, Dubai, and Geneva rely on GIRO’s HASTUS™ solution
HASTUS

- Integrated software suite
 - Scheduling and operations
 - Customer information
 - Planning and analysis
 - All modes and types
- Recognised industry leader
- Over 30 years of innovation
- Extensive collaboration with leading agencies and universities
The history of *PlanBus*

- Round tables in user groups addressed subject
- Targeted meetings with interested parties
- Early implementation of a semi-automatic solution (list processing)
 - Use of user-defined fields and attributes (client specific)
- Preliminary algorithm design based on our *PlanOpt* solution, enhanced to address the task complexity
- Project with client to implement new generic *PlanBus*
 - Adjustment of *HASTUS* data model
 - Algorithm development and tests with real problems
Resolving vehicle assignment

- A complex task:
 - Large number of vehicles
 - Wide variety of vehicle models and characteristics
 - Multiple requirements: capacity, equipment, livery, advertisement, etc.
 - Parking constraints
 - Maintenance synchronisation
 - Even use of vehicles within a lot
Resolving vehicle assignment

- Often best assignment = best compromise
 - At least respect most important criteria
 - Still difficult to attain without tools
Adjustments to *HASTUS* data model

- Adjustment to existing objects:
 - More details for individual vehicle characteristics

- New objects:
 - Vehicle coverage requirements
 - Maintenance activities
 - Maintenance activity requests
 - Maintenance capacity at depots
 - Vehicle assignment rules
 - Vehicle assignment procedures
Optimisation

- Minimum cost of a network flux problem with multiple iterations
- Possibility to define multiple procedures
 - Different depots/divisions/subset of network
 - Different planning horizons
 - Different rules and parameters
 - Control of maintenance activities generation
- Possibility to fix portions of the solution
Optimisation

Vehicles

Flux 1

1

adjusted

Veh 1

Veh 2

Veh i

Veh n

Free

Flux 1

1

adjusted

Block 1

Block 2

Block j

Block m

\[f (\text{free}) \]

\[2 \cdot 10^6 \]

\[0 \]
Initial implementation (2012)

- Vehicle coverage requirements
- Blocks
- Maintenance activity requests
- Maintenance capacity
- Available vehicles
- Assignment rules
- Assignment solution: vehicle task-vehicle ID & maintenance activities

PlanBus
Evolution

- Initial version provided all functions required by our client
- Mini algorithm “BestNext” implemented in 2013
- On the drawing board:
 - Consider depot layout, circulation constraints, and parking location on return
 - Take into account rail constraints
 - And more....
Conclusions

- System has now been running every day for over six months
- Initial performance and stability issues quickly resolved
- Results with PlanBus much better than previous manual processes
- Significant gains were observed meeting vehicle allocation targets
- PlanBus introduction allowed reduction in peak vehicle requirements